/
Dependabot

Dependabot

Like bricks in a wall: Dependabot is a software supply chain security tool. If you have broken brick, your entire structure may degrade over time if you don’t fix it.

 

Software Supply Chain

The software supply chain consists of the 3rd party frameworks, tools, libraries etc. For example:

  • Spring Boot (Broadcom, formerly VMware)

    • you can find this in the Maven (Apache Foundation) or Gradle (IntelliJ) configs

    • more 3rd party configs like Thymeleaf will be pulled in transiently

  • Enterprise Java Beans (Oracle)

  • Fiori (SAP)

  • the JSON or XML parser ()

Typically, even Micro Service can have 150+ dependencies. Important components (like Log4J) aren’t always obvious.

Dependabot will resolve the entire dependency tree, lookup known vulnerabilities in popular catalogs, and produce a report.

Features

  • Dependabot works with Gradle (pom.xml can be generated) and Maven, as well as NPM, Go etc. The support is expansive

  • Dependabot cannot resolve the imports to actual modules, meaning that it won’t know whether the scanned software project really uses a vulnerable function. Veracode’s SourceClear can do that

  • The reporting depends on GitHub

 

GraphQL API

GitHub services have a REST and a GraphQL API.

https://docs.github.com/en/graphql

Sadly, for GH Security, they are not consistently developed.

Python

Assuming you have

  • Pandas (*_df are DataFrame objects in the following), which accept nested JSON data

  • requests (library) is being used

Based on that, the following Python 3 code exemplifies how to generate a Software Bill Of Materials (SBOM) for a GitHub Advanced Enterprise Security enabled repository.

The set_score function is explained separately. It generates basic metrics.

 

def get_sbom_issues_score(hed=dict, graphql_url="", verbose=False, repo="", org=""): """ Ask GitHub Sec API for data about the Dependabot findings and analyze it :param hed: dict, auth data :param graphql_url: GraphQL endpoint :param verbose: boolean, flag :param repo: string, repository name :param org: string, org name :return: sbom_score (int), sbom_severity_list (DataFrame statistical object) """ from string import Template # this is the GraphQL query for the API query_template_sbom = """ { repository(name: "$repo", owner: "$org") { vulnerabilityAlerts(first: 100) { nodes { createdAt dismissedAt state dismissReason securityVulnerability { package { name } severity advisory { description } } } } } } """ query_template_depbot_enabled = """ { repository(name: "$repo", owner: "$org") { id hasVulnerabilityAlertsEnabled } } """ print("Dependabot Repo: " + repo, file=sys.stdout) dbot_enabled_query = "" sbom_query = "" # prevent escaping the literal context of the graphql template if "\'" or "\"" not in repo + org: template_sbom = Template(query_template_sbom) sbom_query = template_sbom.substitute({'repo': repo, 'org': org}) template_dbot_enabled = Template(query_template_depbot_enabled) dbot_enabled_query = template_dbot_enabled.substitute({'repo': repo, 'org': org}) dbot_enabled_status = requests.post(graphql_url, headers=hed, json={'query': dbot_enabled_query}) parsed_dbot_status_rply = dbot_enabled_status.json()["data"] dbot_status_df = pd.json_normalize(parsed_dbot_status_rply) dbot_status = dbot_status_df["repository.hasVulnerabilityAlertsEnabled"].iloc[0] response_dp = requests.post(graphql_url, headers=hed, json={'query': sbom_query}) parsed_dp = response_dp.json()["data"] df_deps = pd.json_normalize(parsed_dp) # we need to rename the columns because dots with table headers cannot get handled correctly cols = df_deps.columns.map(lambda x: x.replace('.', '_') if isinstance(x, (str)) else x) df_deps.columns = cols # a sub-section of the flattened JSON gets extracted sub_json = df_deps['repository_vulnerabilityAlerts_nodes'][0] # needed in case there are 0 issues and the HTTP status code is ok if len(sub_json) == 0 and response_dp.status_code == 200: status = {"Status": "No findings"} status_df = pd.DataFrame([status]) print("Dependabot Status: " + "no findings for repo", file=sys.stdout) return 0, status_df # handle disabled state if not dbot_status or response_dp.status_code == 403: status = {"Status": "Disabled"} status_df = pd.DataFrame([status]) print("Dependabot Status: " + "disabled for repo", file=sys.stdout) print() return 100, status_df if len(sub_json) > 0 and response_dp.status_code == 200: print("Dependabot Status: " + "processing findings for repo", file=sys.stdout) # data with the findings needs to be re-framed dependabot_data = pd.DataFrame(sub_json) # data needs to vbe flattened again dependabot_issues = pd.json_normalize(pd.DataFrame.from_records(sub_json)["securityVulnerability"]) # since the data is flattened and framed from JSON we need to normalize the types dependabotDf = pd.concat([dependabot_data["state"], dependabot_issues], axis=1) dependabotDf["state"] = dependabotDf["state"].astype(str) dependabotDf["severity"] = dependabotDf["severity"].str.lower() # print(dependabotDf) # column renamed again for this dataframe cols = dependabotDf.columns.map(lambda x: x.replace('.', '_') if isinstance(x, (str)) else x) dependabotDf.columns = cols # filter out anything that's not been treated (marked as dismissed in API) dependabot_severity_open_list = dependabotDf[dependabotDf['state'] == 'OPEN'] print(dependabot_severity_open_list) if verbose: print("Software Components Issue List (open)") dependabot_severity_list = dependabot_severity_open_list["severity"].value_counts() if verbose: print(dependabot_severity_list) print("Software Components Severity Score (open)") sbom_score = set_score(severity_df=dependabot_severity_list) # for better table style dependabot_severity_list = dependabot_severity_list.reset_index() dependabot_severity_list.columns = ['Risk', 'Dependency Findings Reported'] return sbom_score, dependabot_severity_list
  • An equivalent REST endpoint doesn’t seem to exist ( last time I checked Feb 7, 2023 )

  • This is equivalent for GH Cloud and on-premises Server variants

 

Use these results in an SSDLC

Secure Software Development Lifecycle

 

Here is how basic metrics can be generated: