I am looking into Log2Vec as a TD-IDF alternative to log vectorization. Primarily, I’ll be interested in consuming Sysmon logs later.
Log2Vec
Abstract—Logs are one of the most valuable data sources for large-scale service management. Log representation, which converts unstructured texts to structured vectors or matrices, serves as the the first step towards automated log analysis. However, the current log representation methods neither represent domain-specific semantic information of logs, nor handle the outof-vocabulary (OOV) words of new types of logs at runtime. We propose Log2Vec, a semantic-aware representation framework for log analysis. Log2Vec combines a log-specific word embedding method to accurately extract the semantic information of logs, with an OOV word processor to embed OOV words into vectors at runtime. We present an analysis on the impact of OOV words and evaluate the performance of the OOV word processor. The evaluation experiments on four public production log datasets demonstrate that Log2Vec not only fixes the issue presented by OOV words, but also significantly improves the performance of two popular log-based service management tasks, including log classification and anomaly detection. We have packaged Log2Vec into an open-source toolkit and hope that it can be used for future research.
The work was supported by National Key R&D Program of China (Grant No. 2019YFB1802504, 2018YFB1800405), the National Natural Science Foundation of China (Grant Nos. 61772307, 61902200 and 61402257), the China Postdoctoral Science Foundation (2019M651015) and the Beijing National Research Center for Information Science and Technology (BNRist).
Paper
Our paper is published on The 29th International Conference on Computer Communications and Networks (ICCCN 2020,). The information can be found here:
Weibin Meng, Ying Liu, Yuheng Huang, Shenglin Zhang, Federico Zaiter, Bingjin Chen, Dan Pei. A Semantic-aware Representation Framework for Online Log Analysis. ICCCN 2020. August 3 - August 6, 2020, Honolulu, Hawaii, USA.
Install Log2Vec on Linux Mint 21 AMD64 in 2024
I use separate conda environments for “older” research-grade software. Software moves at a rapid pace.
It requires a little bit of software engineering skill.
This is straightforward, but I document the compiler version here for the sake of completeness.
apt install build-essential
apt install cmake
(log2vec) marius@mleng:~/source/Log2Vec/code/LRWE/src$ dpkg -l | grep build-essential
ii build-essential 12.9ubuntu3 amd64 Informational list of build-essential packages
(log2vec) marius@mleng:~/source/Log2Vec/code/LRWE/src$ dpkg -l | grep cmake
ii cmake 3.22.1-1ubuntu1.22.04.1 amd64 cross-platform, open-source make system
ii cmake-data 3.22.1-1ubuntu1.22.04.1 all CMake data files (modules, templates and documentation)
(log2vec) marius@mleng:~/source/Log2Vec$ python log2vec.py -i results -t HDFS
# no errors
(log2vec) marius@mleng:~/source/Log2Vec$ python code/preprocessing.py -rawlog ./code/data/BGL.log
rawlogs:./code/data/BGL.log
variables have been removed
logs without variables:./code/data/BGL_without_variables.log
(log2vec) marius@mleng:~/source/Log2Vec$ python code/get_syn_ant.py -logs ./code/data/BGL_without_variables.log -ant_file ./middle/ants.txt
input: ./code/data/BGL_without_variables.log
syn_file ./middle/syns.txt
ant_file ./middle/ants.txt
(log2vec) marius@mleng:~/source/Log2Vec$ python code/get_triplet.py data/BGL_without_variables.log middle/bgl_triplet.txt
(log2vec) marius@mleng:~/source/Log2Vec$
(log2vec) marius@mleng:~/source/Log2Vec$ python code/getTempLogs.py -input data/BGL_without_variables.log -output middle/BGL_without_variables_for_training.log
input: data/BGL_without_variables.log
output: middle/BGL_without_variables_for_training.log
(log2vec) marius@mleng:~/source/Log2Vec/code/LRWE/src$ ./lrcwe -train ../../../middle/BGL_without_variables_for_training.log
alpha:0.050000, alpha_syn:0.025000, alpha_ant:0.001000, alpha_rel:0.010000
belta_syn:0.700000, belta_ant:0.200000, belta_rel:0.800000
Starting training using file ../../../middle/BGL_without_variables_for_training.log
train_file: ../../../middle/BGL_without_variables_for_training.log
word_num:0
Vocab size: 1
Words in train file: 1
(log2vec) marius@mleng:~/source/Log2Vec/code/LRWE/src$ ./lrcwe -train /home/marius/source/Log2Vec/middle/BGL_without_variables_for_training.log -synonym /home/marius/source/Log2Vec/middle/syns.txt -antonym /home/marius/source/Log2Vec/middle/ants.txt -output /home/marius/source/Log2Vec/middle/bgl_words.model -save-vocab /home/marius/source/Log2Vec/middle/bgl.vocab -belta-rel 0.8 - alpha-rel 0.01 -alpha-ant 0.3 -size 32 -min-count 1 /home/marius/source/Log2Vec/middle/bgl_triplet.txt
alpha:0.050000, alpha_syn:0.025000, alpha_ant:0.300000, alpha_rel:0.010000
belta_syn:0.700000, belta_ant:0.200000, belta_rel:0.800000
Starting training using file /home/marius/source/Log2Vec/middle/BGL_without_variables_for_training.log
train_file: /home/marius/source/Log2Vec/middle/BGL_without_variables_for_training.log
word_num:0
Vocab size: 1
Words in train file: 1
synonyms file total line: 0, words: 0, ignore words: 407
antonyms file total line: 0, words: 0, ignore words: 10
(log2vec) marius@mleng:~/source/Log2Vec$ python code/mimick/make_dataset.py --vectors /home/marius/source/Log2Vec/middle/bgl_words.model --w2v-format --output /home/marius/source/Log2Vec/middle/bgl_words.pkl
Total in Embeddings vocabulary: 1
Training set character count: 4
(log2vec) marius@mleng:~/source/Log2Vec$ python code/mimick/model.py --dataset /home/marius/source/Log2Vec/middle/bgl_words.pkl --vocab code/mimick/testdir/testvocab.txt --output middle/oov.vector
[dynet] random seed: 1179517440
[dynet] allocating memory: 512MB
[dynet] memory allocation done.
100% | |
[lr=0.01 clips=0 updates=0] None
The dy.parameter(...) call is now DEPRECATED. |
There is no longer need to explicitly add parameters to the computation graph.
Any used parameter will be added automatically.
100% |############################################################################################|
100% | |
[lr=0.01 clips=0 updates=0] None
100% |############################################################################################|
100% | |
[lr=0.01 clips=0 updates=0] None
100% |############################################################################################|
100% | |
[lr=0.01 clips=0 updates=0] None
100% |############################################################################################|
100% | |
[lr=0.01 clips=0 updates=0] None
100% |############################################################################################|
100% | |
[lr=0.01 clips=0 updates=0] None
100% |############################################################################################|
100% | |
[lr=0.01 clips=0 updates=0] None
100% |############################################################################################|
100% | |
[lr=0.01 clips=0 updates=0] None
100% |############################################################################################|
100% | |
[lr=0.01 clips=0 updates=0] None
100% |############################################################################################|
100% | |
[lr=0.01 clips=0 updates=0] None
100% |############################################################################################|
Very interesting. This appears to be a multistaged and very advanced vectorization technique.
conda env as YAML (Python 3.9, 16.1.2024)
This allows to build a fully functional environment with Log2Vec based on Python 3.9. The original release was 3.6. There will be some deprecation warnings, but I believe they can be safely ignored.
curl https://gist.githubusercontent.com/norandom/a1fd048d7d870a90aa72c9c45fd44e02/raw/f8c6ad9c5470b5380d4bcea8eaa237dd64217f9d/conda_env_log2vec.yml -o log2vec_conda.yml
conda env create -f conda_env_log2vec.yml
conda activate log2vec
... # conda env gets stored in the user homes
git clone https://github.com/NetManAIOps/Log2Vec
# follow the steps
Wrapper for the Log2Vec libraries for automated Log file vectorization
This allows to use the Log2Vec library for automated log file vectorization based on the semantic embedding and NLP approach demonstrated in the paper.